

ORIGINAL ARTICLE

Acute effects of e-cigarette vaping on pulmonary function and airway inflammation in healthy individuals and in patients with asthma

SERAFEIM-CHRYSOVALANTIS KOTOULAS,¹ ATHANASIA PATAKA,¹ KALLIOPI DOMVRI,² DIONISIOS SPYRATOS,² PARASKEVI KATSAOUNOU,³ KONSTANTINOS PORPODIS,² EVANGELIA FOUKA,² AIKATERINI MARKOPOULOU,⁴ KATALIN PASSA-FEKETE,¹ IOANNA GRIGORIOU,¹ THEODOROS KONTAKIOTIS,² PARASKEVI ARGYROPOULOU

¹ AND DESPOINA PAPAKOSTA²

¹Clinic of Respiratory Failure, General Hospital of Thessaloniki 'Georgios Papanikolaou', Aristotle University of Thessaloniki, Thessaloniki, Greece; ²Department of Pulmonary Medicine, General Hospital of Thessaloniki 'Georgios Papanikolaou', Aristotle University of Thessaloniki, Thessaloniki, Greece; ³1st ICU 'Evangelismos Hospital' School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; ⁴Clinic of Pulmonary Medicine of National Healthcare System, General Hospital of Thessaloniki 'Georgios Papanikolaou', Thessaloniki, Greece

ABSTRACT

Background and objective: The acute effects of ecigarettes have not been scientifically demonstrated yet. The aim of this study was to assess the acute changes in pulmonary function and airway inflammation in patients with asthma after vaping one e-cigarette.

Methods: Twenty-five smokers suffering from stable moderate asthma according to GINA guidelines with no other comorbidities and 25 healthy smokers matched with the baseline characteristics of the asthmatic patients were recruited. PFT, IOS, FeNO and EBC were performed before and after vaping one e-cigarette with nicotine. pH and concentrations of IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, IL-17A, TNF-α, ISO8 and LTB4 were measured in EBC.

Results: FFEV1/FVC ratio and PEF were reduced in asthmatic patients after e-cigarette. Z5Hz and R5Hz, R10Hz and R20Hz increased in both groups. FeNO and EBC pH increased by 3.60 ppb (P=0.001) and 0.15 (P=0.014) in asthmatic patients after e-cigarette, whereas they decreased in control group by 3.28 ppb (P<0.001) and 0.12 (P=0.064), respectively. The concentrations of IL-10, TNF-α and ISO8 in EBC increased in asthmatic patients after e-cigarette and the changes in concentrations of IL-1β and IL-4 differed significantly between the two groups.

Conclusion: E-cigarette vaping resulted in acute alteration of both pulmonary function and airway inflammation in stable moderate asthmatic patients.

Clinical trial registration: ISRCTN89151172I at ISRCTN registry http://isrctn.com

Received 30 August 2019; invited to revise 25 October 2019; revised 21 January 2020; accepted 27 February 2020 Associate Editor: Judith Mak; Senior Editor: Fanny Ko

SUMMARY AT A GLANCE

The e-cigarette is rapidly gaining ground on tobacco cigarettes and is a hot topic worldwide, but its safety has not been scientifically proved. This is the first study that investigates the acute effects of e-cigarettes on both lung function and airway inflammation in asthmatic patients.

Key words: airway inflammation, asthma, e-cigarette, impulse oscillometry system, pulmonary function tests.

INTRODUCTION

Asthma is a chronic inflammatory airway disease, and several factors have been implicated in the aggravation this inflammation, with cigarette smoke being one of the key factors.1 Smoking prevalence in asthmatic patients is relatively close to that of the general population.² Asthmatic smokers present with worse lung function, more symptoms, more exacerbations and worse prognosis than non-smoking asthmatic patients.^{1,3} Non-invasive techniques as the assessment of the fractional exhaled nitric oxide (FeNO) and exhaled breath condensate (EBC) are increasingly used for analysing airway inflammation. The effect of acute exposure to cigarette smoke on the respiratory system using EBC has not been studied extensively, 4-7 especially in asthmatic patients.8-11 Smokers with asthma are more sensitive to the inflammatory effects of conventional cigarette compared to healthy smokers,9 and they develop a different type of airway inflammation with more cells and higher percentage of neutrophils in induced sputum, lower pH and diverse inflammatory mediators' profiles in EBC.8-11

Several smokers attempt to quit smoking using electronic cigarette (e-cigarette) as an alternative. The

Correspondence: Kotoulas Serafeim-Chrysovalantis, Clinic of Respiratory Failure, General Hospital of Thessaloniki 'Georgios Papanikolaou', Aristotle University of Thessaloniki, Sarantaporou 42–44, 54639, Thessaloniki, Greece. Email: akiskotoulas@hotmail.com

studies on the acute effects of e-cigarette on lung function are few, ¹²⁻¹⁵ and regarding asthmatic patients, very few studies examined pulmonary function, ¹⁶⁻¹⁸ and none to date investigated airway inflammation evaluated by EBC.

The aim of this study was to investigate the acute effects of e-cigarette on lung function and airway inflammation in a group of asthmatic smokers and compare them with a matched sample of healthy smokers.

METHODS

The protocol of this study was approved by the Ethics Committee of the Medical School, Aristotle University of Thessaloniki, reference 369-8/22.2.2017, before the initiation of enrolment and all participants gave their written informed consent. The protocol of the study was registered in ISRCTN registry (ISRCTN89151172). Participants of both groups were current every-day smokers. 19 The inclusion criteria for the asthmatic patients were: (i) patients suffering from moderate persistent stable asthma well controlled with long-acting β2-agonists (LABA) and low dose of inhaled corticosteroids (ICS) (step 3)¹ from the asthma clinic, (ii) not systematic use of e-cigarette, 19 (iii) age ≥18 years, (iv) absence of another chronic or acute disease necessitating any kind of treatment, (v) absence of acute asthma exacerbation or use of systemic corticosteroids 1 month prior to the study and (vi) absence of administration of any other medication 2 weeks before the study. Asthmatic patients were asked not to refrain from their medications before the study in order to better reflect real-life conditions and the last dose of ICS was administered after their morning awakening. From 967 asthmatic patients assessed for eligibility, 580 were excluded because they had mild or severe asthma, 271 because they were not every-day smokers and 29 because they did not meet the rest of inclusion criteria. Of the 87 patients eligible, 25 were selected using a random number generator. Healthy smokers visiting the smoking cessation clinic were recruited for the control group. The inclusion criteria for the control group were: (i) age ≥18 years, (ii) not systematic use of e-cigarette, 19 (iii) absence of any chronic or acute disease and (iv) abstinence of any medication 2 weeks before participating in the study. Controls were matched for age (± 2 years), gender, body mass index (BMI) ($\pm 2 \text{ kg/m}^2$) and the number of pack/years (± 2 pack/years) with asthmatic patients.

Sample size was calculated using the G*Power software (Die Heinrich Heine Universität, Düsseldorf, Germany). The difference of the changes in FeNO before and after e-cigarette between the two groups was used as the primary endpoint of the study. Sample size was calculated considering a statistically significant change of 20% in FeNO.²⁰ The expected effect size was calculated at 0.94, with a power at 0.95 and a level of statistical significance at 0.05.

Before the initiation of the study, exhaled carbon monoxide was measured in all the participants (piCO Smokerlyzer; Bedfont-Scientific-Ltd, Kent, UK) to confirm

smoking abstinence (at least 8 h). Measurements less than 6 parts per million were acceptable (Fig. 1).

All participants underwent pulmonary function tests (PFT)²¹ (Master Screen PFT; Jaeger, Wurzburg, Germany) and total respiratory resistance measurement with an impulse oscillometry system (IOS)^{22,23} (Master Screen IOS; Viasys Jaeger, Hoechberg, Germany). Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC ratio, peak expiratory flow (PEF), maximal expiratory flow at 25%, 50% and 75% of vital capacity. functional residual capacity (FRC), total lung capacity (TLC), residual volume (RV), expiratory reserve volume (ERV), alveolar ventilation (VA) and diffusion lung capacity for carbon monoxide (DL_{CO}) were measured. Respiratory impedance at 5 Hz (Z5Hz); respiratory resistance at 5, 10 and 20 Hz (R5Hz, R10Hz and R20Hz, respectively); reactance at 5, 10 and 20 Hz; and resonant frequency were assessed with IOS.

Airway inflammation was assessed by FeNO measurement²⁴ (Denox88; ECOMEDICS, Dürnten, Switzerland) and EBC collection²⁵ (EcoScreen-device; Jaeger, Wurzburg, Germany). EBC pH measurement was performed by pH meter²⁵ (OrionStar-A121 pH portable meter kit with triode pH/ATC electrode solutions meter armour and field; ThermoScientific, Waltham, MA, USA). EBC concentrations of 8-isoprostane (ISO8) and leukotriene B4 (LTB4) were performed by enzymelinked immunosorbent assay (ELISA)²⁵ (VICTOR X3 Spectrophotometer; PerkinElmer, Waltham, MA, USA), and EBC concentrations of interleukin (IL)-1 β , IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, IL-17A and tumour necrosis factor-alpha (TNF- α) were detected by flow cytometry (bead-technology)²⁶ (FACSCalibur-BD-Biosciences, Jhotwara, Rajasthan, India).

All participants were provided an e-cigarette of the same company with the same concentration of nicotine in the cartridge (medium nicotine content; NOBACCO, Halandri, Greece), powered by a lithium battery with 1.2 Ω coil resistance. Its chemical composition has been analysed in a previous study. 13 A new cartridge and atomizer was used for each participant. Participants of both groups vaped the e-cigarette for 5 min (10 puffs with 30-s inter-puff intervals, 1.0-1.5 mL of e-liquid). Vaping protocol was strictly followed to reassure similar inhalation process in both groups. No serious adverse events were observed, except for two asthmatic patients experiencing mild wheezing after vaping which resolved quickly without bronchodilators. In 15 min after vaping, participants were subjected again to PFT and IOS measurements and in 30 min after vaping to FeNO measurement and EBC collection. The same procedure and timeline were followed for all measurements both before and after e-cigarette. All measurements were performed by paramedical technicians who were blinded to the research.

Statistical analysis was performed using the SPSS (version-20; IBM-SPSS, Armonk, NY, USA). Continuous variables were presented as mean \pm SD. P < 0.05 was accepted as statistically significant. To separate parametric from non-parametric variables, normality test using the Shapiro–Wilk test was performed. Paired samples t-test for parametric or Wilcoxon signed-ranks test for non-parametric variables were

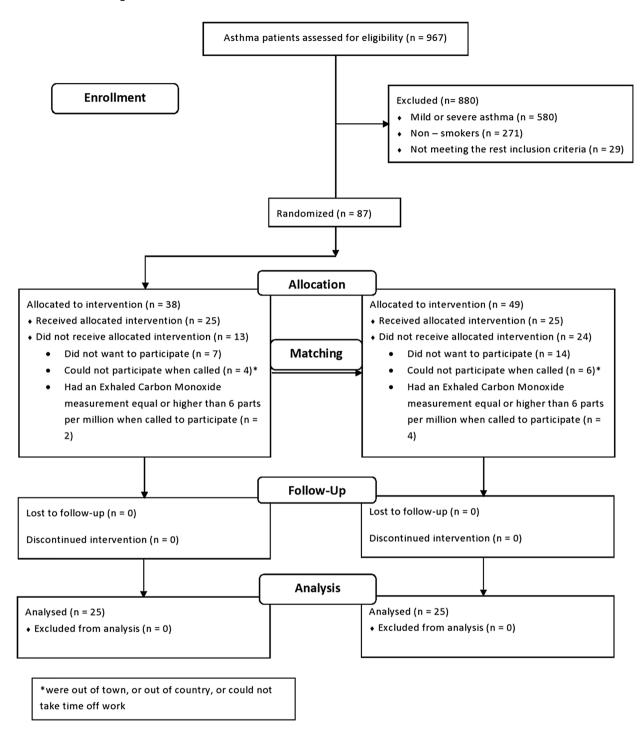


Figure 1 Study flow chart. †Were out of town, or out of country or could not take time off work from the art work

used to detect significant differences in the variables measured before and after the e-cigarette for each group. To detect significant differences between the two groups in baseline characteristics and to compare the differences in the variables measured before and after e-cigarette between the two groups, independent samples t-rest and the Mann-Whitney U-test were used for parametric and non-parametric variables, respectively.

RESULTS

The two groups were matched for gender, age, BMI and number of pack/years (Table 1). After e-cigarette, FEV1/FVC and PEF significantly decreased in asthmatic patients, but not in controls (Tables 2,3). In addition, Z5Hz significantly increased in asthmatic patients, whereas in controls the respective increase was not significant (Tables 2,3). R5Hz,

Table 1 Comparison of baseline characteristics and values between the two groups (mean \pm SD)

Variables	Group of healthy controls	Group of asthmatic patients	<i>P</i> -value
Gender (M (%)/F (%))	8 (32%)/17 (68%)	13 (52%)/12 (48%)	0.152
Age (years)	$\textbf{39.88} \pm \textbf{10.24}$	40.64 ± 10.81	0.503
Height (m)	$\textbf{1.69} \pm \textbf{0.11}$	1.75 \pm 0.11	0.092
Weight (kg)	76.72 ± 17.48	$\textbf{80.20} \pm \textbf{22.09}$	0.648
BMI (kg/m²)	$\textbf{26.46} \pm \textbf{3.82}$	$\textbf{25.99} \pm \textbf{5.03}$	0.541
Pack/years (n)	$\textbf{15.26} \pm \textbf{13.80}$	14.82 \pm 18.63	0.506
FVC (L)	4.02 ± 0.91	$\textbf{4.45} \pm \textbf{1.15}$	0.145
FVC (% predicted)	104.61 \pm 15.17	104.61 \pm 14.2	0.999
FEV1 (L)	$\textbf{3.42} \pm \textbf{0.79}$	$\textbf{3.43} \pm \textbf{0.90}$	0.948
FEV1 (% predicted)	105.20 \pm 16.67	95.94 ± 13.18	0.008
FEV1/FVC (%)	$\textbf{82.63} \pm \textbf{6.95}$	$\textbf{75.19} \pm \textbf{8.23}$	< 0.001
FEV1/FVC (% predicted)	101.83 \pm 7.60	$\textbf{93.26} \pm \textbf{9.25}$	0.001
PEF (L/s)	$\textbf{7.42} \pm \textbf{1.75}$	$\textbf{7.58} \pm \textbf{2.02}$	0.772
PEF (% predicted)	98.80 ± 21.51	92.03 ± 19.55	0.250
RV (L)	1.51 ± 0.43	$\textbf{1.87} \pm \textbf{0.53}$	0.009
RV (% predicted)	87.30 \pm 14.91	100.43 ± 26.64	0.114
ERV (L)	1.08 ± 0.48	1.44 ± 0.65	0.027
ERV (% predicted)	87.52 ± 36.43	108.88 ± 39.00	0.054
TLC (L)	5.56 ± 0.95	6.20 ± 1.33	0.057
TLC (% predicted)	97.41 ± 9.60	97.52 ± 12.4	0.973
VA (L)	5.39 ± 0.93	6.02 ± 1.31	0.057
VA (% predicted)	97.12 ± 10.28	97.12 ± 12.91	0.999
DL _{CO} (mmol/min/kPa)	8.25 \pm 1.73	8.70 ± 2.32	0.322
DL _{CO} (% predicted)	85.63 ± 8.60	84.23 ± 15.29	0.692
K _{CO} (mmol/min/kPa/L)	1.53 ± 0.14	$\textbf{1.45} \pm \textbf{0.26}$	0.190
K _{CO} (% predicted)	91.07 ± 10.44	89.64 \pm 15.35	0.854
Z5Hz (kPa/L/s)	0.440 ± 0.098	0.431 ± 0.121	0.779
R5Hz (kPa/L/s)	0.426 ± 0.099	0.419 ± 0.115	0.803
R10Hz (kPa/L/s)	0.382 ± 0.096	$\textbf{0.376} \pm \textbf{0.104}$	0.844
R20Hz (kPa/L/s)	0.367 ± 0.097	0.362 ± 0.101	0.865
FeNO (ppb)	$\textbf{15.12} \pm \textbf{6.48}$	14.88 ± 11.60	0.232
pH	6.40 ± 0.29	6.25 ± 0.21	0.037
IL-1β (pg/mL)	$\textbf{4.14} \pm \textbf{6.37}$	$\textbf{1.06} \pm \textbf{2.32}$	0.017
IL-4 (pg/mL)	$\textbf{2.15} \pm \textbf{2.62}$	0.80 ± 1.98	0.019
IL-6 (pg/mL)	$\textbf{0.99} \pm \textbf{1.36}$	$\textbf{1.19} \pm \textbf{3.93}$	0.330
IL-8 (pg/mL)	0.40 ± 1.85	$\textbf{0.01} \pm \textbf{0.04}$	0.574
IL-10 (pg/mL)	17.49 ± 0.76	17.15 ± 0.47	0.103
IL-13 (pg/mL)	$\textbf{1.14} \pm \textbf{0.28}$	$\textbf{1.04} \pm \textbf{0.32}$	0.127
IL-17A (pg/mL)	1.51 ± 2.01	0.81 ± 1.72	0.123
TNF-α (pg/mL)	$\textbf{0.42} \pm \textbf{0.72}$	0.10 ± 0.30	0.014
ISO8 (pg/mL)	12.59 ± 24.03	1.36 ± 4.26	0.009
LTB4 (pg/mL)	243.12 ± 256.08	92.74 ± 70.84	0.005

BMI, body mass index; DL_{CO}, diffusion lung capacity for carbon monoxide; ERV, expiratory reserve volume; F, female; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; IL, interleukin; ISO8, 8-isoprostane; K_{CO}, DL_{CO}/VA; LTB4, leukotriene B4; M, male; PEF, peak expiratory flow; ppb, parts per billion; R5Hz, R10Hz, R20Hz, respiratory resistance at 5, 10 and 20 Hz; RV, residual volume; TLC, total lung capacity; TNF-α, tumour necrosis factor-alpha; VA, alveolar ventilation; Z5Hz, respiratory impedance at 5 Hz.

R10Hz and R20Hz increased in both groups (Tables 2,3).

Regarding airway inflammation, initially, there were statistically significant differences in EBC pH and concentrations of IL-1 β , IL-4, TNF- α , ISO8 and LTB4 between the two groups (Table 1). After e-cigarette, FeNO and EBC pH increased significantly in asthmatic patients, whereas in controls they decreased (Tables 2,3). After e-cigarette, IL-10, TNF- α and ISO8 increased significantly in asthmatic patients, whereas no significant differences were observed in controls

(Tables 2,3). Furthermore, the changes in concentrations of IL-1 β and IL-4 before and after e-cigarette between the two groups differed significantly (Table 4).

DISCUSSION

The main outcome of our study was that both pulmonary function and airway inflammation were altered after e-cigarette vaping for 5 min in asthmatic patients despite the regular use of ICS, while in healthy controls

Table 2 Changes in pulmonary function and inflammatory mediators before and after e-cigarette in the asthmatic group (mean \pm SD)

Variables	Before e-cigarette	After e-cigarette	Mean difference	<i>P</i> -value
FVC (L)	4.45 ± 1.15	4.43 ± 1.17	-0.02	0.534
FVC (% predicted)	104.61 ± 14.2	103.88 ± 13.62	-0.73	0.726
FEV1 (L)	3.43 ± 0.90	$\textbf{3.39} \pm \textbf{0.91}$	-0.04	0.113
FEV1 (% predicted)	95.94 ± 13.18	94.64 ± 14.29	-1.30	0.067
FEV1/FVC (%)	$\textbf{75.19} \pm \textbf{8.23}$	$\textbf{74.58} \pm \textbf{7.96}$	-0.61	0.040
FEV1/FVC (% predicted)	93.26 ± 9.25	92.52 ± 9.01	-0.74	0.042
PEF (L/s)	$\textbf{7.58} \pm \textbf{2.02}$	$\textbf{7.12} \pm \textbf{2.08}$	-0.46	0.003
PEF (% predicted)	92.03 ± 19.55	84.84 ± 19.02	−7.19	0.001
RV (L)	1.87 ± 0.53	1.89 ± 0.44	+0.02	0.772
RV (% predicted)	100.43 ± 26.64	101.69 \pm 21.59	+1.26	0.738
ERV (L)	$\textbf{1.44} \pm \textbf{0.65}$	$\textbf{1.29} \pm \textbf{0.57}$	-0.15	0.051
ERV (% predicted)	108.88 ± 39.00	96.69 ± 28.97	-12.19	0.053
TLC (L)	6.20 ± 1.33	6.13 ± 1.28	-0.07	0.141
TLC (% predicted)	97.52 \pm 12.4	96.58 ± 11.33	-0.94	0.187
VA (L)	6.02 ± 1.31	5.96 ± 1.26	-0.06	0.148
VA (% predicted)	97.12 \pm 12.91	96.16 ± 11.78	-0.96	0.186
DL _{CO} (mmol/min/kPa)	$\textbf{8.70} \pm \textbf{2.32}$	8.56 ± 2.05	-0.14	0.165
DL _{CO} (% predicted)	84.23 ± 15.29	82.94 \pm 12.40	-1.29	0.173
K _{CO} (mmol/min/kPa/L)	$\textbf{1.45} \pm \textbf{0.26}$	1.44 ± 0.24	-0.01	0.620
K _{CO} (% predicted)	89.64 ± 15.35	89.26 ± 13.64	-0.38	0.662
Z5Hz (kPa/L/s)	0.431 ± 0.121	0.464 ± 0.149	+0.033	0.040
R5Hz (kPa/L/s)	0.419 ± 0.115	0.449 ± 0.142	+0.030	0.054
R10Hz (kPa/L/s)	0.376 ± 0.104	0.403 ± 0.128	+0.027	0.043
R20Hz (kPa/L/s)	0.362 ± 0.101	0.386 ± 0.114	+0.024	0.026
FeNO (ppb)	14.88 ± 11.60	18.48 ± 13.38	+3.60	0.001
pH	6.25 ± 0.21	6.40 ± 0.30	+0.15	0.014
IL-1β (pg/mL)	$\textbf{1.06} \pm \textbf{2.32}$	$\textbf{1.13} \pm \textbf{1.32}$	+0.07	0.084
IL-4 (pg/mL)	$\textbf{0.80} \pm \textbf{1.98}$	$\textbf{1.42} \pm \textbf{2.95}$	+0.62	0.328
IL-6 (pg/mL)	1.19 ± 3.93	$\textbf{0.92} \pm \textbf{1.77}$	-0.27	0.394
IL-8 (pg/mL)	0.01 ± 0.04	$\textbf{0.17} \pm \textbf{0.62}$	+0.16	0.080
IL-10 (pg/mL)	$\textbf{17.15} \pm \textbf{0.47}$	17.49 ± 0.67	+0.34	0.002
IL-13 (pg/mL)	$\textbf{1.04} \pm \textbf{0.32}$	$\textbf{1.14} \pm \textbf{0.32}$	+0.10	0.074
IL-17A (pg/mL)	0.81 ± 1.72	1.70 ± 2.48	+0.89	0.061
TNF- α (pg/mL)	0.10 ± 0.30	0.43 ± 0.68	+0.33	0.028
ISO8 (pg/mL)	1.36 ± 4.26	12.79 ± 34.50	+11.43	0.008
LTB4 (pg/mL)	92.74 ± 70.84	168.02 ± 253.44	+75.28	0.189

DL_{CO}, diffusion lung capacity for carbon monoxide; e-cigarette, electronic cigarette; ERV, expiratory reserve volume; F, female; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; IL, interleukin; ISO8, 8-isoprostane; K_{CO} , DL_{CO}/VA; LTB4, leukotriene B4; M, male; PEF, peak expiratory flow; ppb, parts per billion; R5Hz, R10Hz, R20Hz, respiratory resistance at 5, 10 and 20 Hz; RV, residual volume; TLC, total lung capacity; TNF- α , tumour necrosis factor-alpha; VA, alveolar ventilation; Z5Hz, respiratory impedance at 5 Hz.

the changes in airway inflammation markers were not significant.

Previous studies showed that e-cigarette is associated with the deterioration of respiratory symptoms and lung function and with increased flow resistance in healthy but also in smokers with obstructive pulmonary disease, such as asthma. 12-17 However, other studies have shown that the use of e-cigarettes free of nicotine, with a mixture of propylene glycol and glycerol, did not significantly affect the pulmonary function or symptoms of both healthy and asthmatic subjects. 18 In our study, the pulmonary function (especially FEV1/FVC ratio and PEF) was reduced only in asthmatic patients but flow resistance increased in both groups. This finding is in accordance with previous studies in healthy adults, 13,16,17 but also in asthmatic patients. 25Hz

was significantly increased only in asthmatic patients after e-cigarette. In a recent study on the acute effects (i.e. immediately and 15 and 30 min) of e-cigarettes on the pulmonary function of smokers with mild asthma, Z5Hz was found to be increased in both asthmatic and healthy smokers with a more significant increase in asthmatic patients.¹⁶ In that study, similarly with ours, both large (R20Hz) and total airway resistance (R5Hz) increased in both groups indicating bronchoconstriction. In our study, the difference was not significantly higher in asthmatic patients probably because we performed only one measurement 15 min after e-cigarette.

Concerning airway inflammation, an acute FeNO and pH increase was found 30 min after e-cigarette in asthmatic patients, whereas a decrease was measured

Table 3 Changes in pulmonary function and inflammatory mediators before and after e-cigarette in the control group (mean \pm SD)

Variables	Before e-cigarette	After e-cigarette	Mean difference	<i>P</i> -value
FVC (L)	$\textbf{4.02} \pm \textbf{0.91}$	4.03 ± 0.90	+0.01	0.696
FVC (% predicted)	104.61 \pm 15.17	104.74 \pm 13.62	+0.13	0.873
FEV1 (L)	3.42 ± 0.79	$\textbf{3.39} \pm \textbf{0.79}$	-0.03	0.267
FEV1 (% predicted)	105.20 \pm 16.67	104.06 \pm 14.29	-1.14	0.125
FEV1/FVC (%)	82.63 ± 6.95	81.80 ± 6.38	-0.83	0.169
FEV1/FVC (% predicted)	101.83 \pm 7.60	100.82 \pm 6.98	-1.01	0.175
PEF (L/s)	7.42 \pm 1.75	$\textbf{7.23} \pm \textbf{2.17}$	-0.19	0.321
PEF (% predicted)	98.80 ± 21.51	94.78 ± 22.40	-4.02	0.141
RV (L)	1.51 \pm 0.43	$\textbf{1.53} \pm \textbf{0.50}$	+0.01	0.590
RV (% predicted)	87.30 \pm 14.91	88.32 ± 18.03	+1.02	0.757
ERV (L)	$\textbf{1.08} \pm \textbf{0.48}$	$\textbf{1.06} \pm \textbf{0.49}$	-0.02	0.818
ERV (% predicted)	87.52 \pm 36.43	$\textbf{84.84} \pm \textbf{32.09}$	-2.68	0.583
TLC (L)	5.56 ± 0.95	$\textbf{5.59} \pm \textbf{0.97}$	+0.03	0.277
TLC (% predicted)	97.41 ± 9.60	97.88 ± 8.08	+0.47	0.426
VA (L)	$\textbf{5.39} \pm \textbf{0.93}$	$\textbf{5.43} \pm \textbf{0.95}$	+0.04	0.292
VA (% predicted)	97.12 \pm 10.28	97.60 ± 8.75	+0.48	0.434
DL _{CO} (mmol/min/kPa)	8.25 \pm 1.73	8.12 \pm 1.74	-0.13	0.289
DL _{CO} (% predicted)	85.63 ± 8.60	$\textbf{84.15} \pm \textbf{7.25}$	-1.48	0.207
K _{CO} (mmol/min/kPa/L)	1.53 \pm 0.14	$\textbf{1.49} \pm \textbf{0.14}$	-0.04	0.070
K _{CO} (% predicted)	91.07 \pm 10.44	89.23 ± 10.51	-1.8	0.122
Z5Hz (kPa/L/s)	$\textbf{0.440} \pm \textbf{0.098}$	0.461 ± 0.106	+0.021	0.063
R5Hz (kPa/L/s)	$\textbf{0.426} \pm \textbf{0.099}$	$\textbf{0.450} \pm \textbf{0.105}$	+0.024	0.034
R10Hz (kPa/L/s)	$\textbf{0.382} \pm \textbf{0.096}$	0.402 ± 0.098	+0.020	0.038
R20Hz (kPa/L/s)	0.367 ± 0.097	$\textbf{0.388} \pm \textbf{0.098}$	+0.021	0.034
FeNO (ppb)	$\textbf{15.12} \pm \textbf{6.48}$	$\textbf{11.84} \pm \textbf{5.19}$	-3.28	<0.001
рН	6.40 ± 0.29	$\textbf{6.28} \pm \textbf{0.29}$	-0.12	0.064
IL-1β (pg/mL)	$\textbf{4.14} \pm \textbf{6.37}$	$\textbf{1.70} \pm \textbf{2.68}$	-2.44	0.064
IL-4 (pg/mL)	$\textbf{2.15} \pm \textbf{2.62}$	$\textbf{1.27} \pm \textbf{1.96}$	-0.88	0.058
IL-6 (pg/mL)	$\textbf{0.99} \pm \textbf{1.36}$	$\textbf{0.78} \pm \textbf{2.35}$	-0.21	0.231
IL-8 (pg/mL)	0.40 ± 1.85	$\textbf{0.03} \pm \textbf{0.17}$	-0.37	0.345
IL-10 (pg/mL)	17.49 ± 0.76	17.59 ± 0.77	+0.10	0.401
IL-13 (pg/mL)	1.14 \pm 0.28	$\textbf{1.21} \pm \textbf{0.37}$	+0.07	0.493
IL-17A (pg/mL)	1.51 ± 2.01	$\textbf{1.28} \pm \textbf{1.30}$	-0.23	0.940
TNF- α (pg/mL)	$\textbf{0.42} \pm \textbf{0.72}$	$\textbf{0.46} \pm \textbf{0.63}$	+0.04	0.737
ISO8 (pg/mL)	12.59 ± 24.03	$\textbf{28.67} \pm \textbf{75.07}$	+16.08	0.530
LTB4 (pg/mL)	243.12 ± 256.08	250.97 ± 289.39	+7.85	0.901

DL_{CO}, diffusion lung capacity for carbon monoxide; e-cigarette, electronic cigarette; ERV, expiratory reserve volume; F, female; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; IL, interleukin; ISO8, 8-isoprostane; K_{CO} , DL_{CO}/VA; LTB4, leukotriene B4; M, male; PEF, peak expiratory flow; ppb, parts per billion; R5Hz, R10Hz, R20Hz, respiratory resistance at 5, 10 and 20 Hz; RV, residual volume; TLC, total lung capacity; TNF- α , tumour necrosis factor-alpha; VA, alveolar ventilation; Z5Hz, respiratory impedance at 5 Hz.

in controls. Previously published studies have shown that FeNO decreased immediately after passive, active smoking²⁷⁻²⁹ and e-cigarette use in healthy and asthmatic smokers, 13,16 although those reductions reversed after 15 and 30 min. 16 However, in other studies no significant changes were observed, 30-32 and in one study FeNO was increased in adult smokers 5 days after switching from tobacco to e-cigarette.33 In our study, FeNO decreased in the controls 30 min after e-cigarette while it increased in asthmatic patients. This finding complies with the changes observed in the concentrations of T-helper-type-2 (Th2) cytokines, such as IL-4 and IL-13, in EBC before and after e-cigarette. IL-4 is important for Th2 differentiation and IL-13 for IgE formation; their increase results in pulmonary eosinophil activation, B-cell IgE production and recruitment of mast cells. FeNO has been associated with the presence of Th2-mediated asthma, reflecting eosinophilic inflammation. In a previous study, IL-4 and IL-5 decreased in EBC of active and passive smokers 30 min after indoor waterpipe smoking.³⁴ It is already known that FeNO is reduced after corticosteroid and antileukotriene treatment.³⁵ Our asthmatic patients received treatment with LABA and ICS. In our point of view, the FeNO difference between the two groups after vaping is due to the different pathophysiology of airway inflammation. E-cigarette acted as a more potent stimulus in asthmatic patients compared to controls and despite the use of ICS the FeNO increased.

EBC pH has been found low in patients with stable asthma compared with healthy controls, with further pH reduction during asthma exacerbations and

Table 4 Comparison of differences before and after e-cigarette between two groups (mean \pm SD)

Variables	Control group	Asthma group	Mean difference	<i>P</i> -value
FVC (L)	+0.01 ± 0.16	-0.02 ± 0.14	0.03	0.480
FVC (% predicted)	$+0.13 \pm 3.97$	-0.73 ± 3.71	0.86	0.977
FEV1 (L)	-0.03 ± 0.12	-0.04 ± 0.13	0.01	0.628
FEV1 (% predicted)	-1.14 ± 3.57	-1.30 ± 3.40	0.16	0.865
FEV1/FVC (%)	-0.83 ± 2.91	-0.61 ± 2.03	0.22	0.677
FEV1/FVC (% predicted)	-1.01 ± 3.62	-0.75 ± 2.47	0.26	0.684
PEF (L/s)	-0.19 ± 0.97	-0.46 ± 1.05	0.27	0.467
PEF (% predicted)	-4.02 ± 13.20	-7.19 ± 11.44	3.17	0.600
RV (L)	+0.01 \pm 0.14	+0.02 \pm 0.35	0.01	0.946
RV (% predicted)	+1.02 \pm 7.75	$+1.26 \pm 18.64$	0.24	0.900
ERV (L)	-0.02 ± 0.30	-0.15 ± 0.37	0.13	0.157
ERV (% predicted)	-2.68 ± 24.01	-12.18 ± 29.91	9.50	0.221
TLC (L)	+0.03 \pm 0.17	-0.07 ± 0.21	0.10	0.066
TLC (% predicted)	+0.48 \pm 2.94	-0.93 ± 3.43	1.41	0.126
VA (L)	+0.04 \pm 0.17	-0.06 ± 0.21	0.10	0.072
VA (% predicted)	+0.48 \pm 3.02	-0.96 ± 3.51	1.44	0.127
DL _{CO} (mmol/min/kPa)	-0.13 ± 0.58	-0.14 ± 0.50	0.01	0.911
DL _{CO} (% predicted)	-1.48 ± 5.69	-1.29 ± 4.58	0.19	0.898
K _{CO} (mmol/min/kPa/L)	-0.04 ± 0.09	-0.01 ± 0.07	0.03	0.242
K _{CO} (% predicted)	-1.84 ± 5.75	-0.38 ± 4.34	1.46	0.316
Z5Hz (kPa/L/s)	$+0.021 \pm 0.054$	$+0.033 \pm 0.077$	0.012	0.515
R5Hz (kPa/L/s)	$+0.024 \pm 0.053$	$+0.030 \pm 0.075$	0.006	0.712
R10Hz (kPa/L/s)	$+0.020\pm0.046$	$+0.027 \pm 0.064$	0.007	0.668
R20Hz (kPa/L/s)	$+0.021 \pm 0.046$	$+0.024 \pm 0.051$	0.003	0.816
FeNO (ppb)	-3.28 ± 4.00	+3.60 \pm 5.97	6.88	< 0.001
рН	-0.12 ± 0.30	+0.15 \pm 0.29	0.27	0.002
IL-1β (pg/mL)	-2.44 ± 6.17	+0.07 \pm 2.43	2.51	0.017
IL-4 (pg/mL)	-0.88 ± 2.22	+0.62 \pm 3.25	1.50	0.009
IL-6 (pg/mL)	-0.21 ± 2.58	-0.27 ± 4.28	0.06	0.239
IL-8 (pg/mL)	-0.37 ± 1.87	+0.16 \pm 0.62	0.53	0.091
IL-10 (pg/mL)	$+0.10 \pm 0.60$	+0.34 \pm 0.72	0.24	0.123
IL-13 (pg/mL)	+0.07 \pm 0.29	$+0.10 \pm 0.37$	0.03	0.749
IL-17A (pg/mL)	-0.23 ± 2.17	+0.89 \pm 2.37	1.12	0.549
TNF-α (pg/mL)	+0.04 \pm 0.80	+0.33 \pm 0.67	0.29	0.241
ISO8 (pg/mL)	+16.08 \pm 64.71	$+11.43 \pm 33.14$	4.65	0.683
LTB4 (pg/mL)	+7.85 \pm 248.64	$+75.28 \pm 242.98$	67.43	0.600

DL_{CO}, diffusion lung capacity for carbon monoxide; e-cigarette, electronic cigarette; ERV, expiratory reserve volume; F, female; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; IL, interleukin; ISO8, 8-isoprostane; K_{CO} , DL_{CO}/VA; LTB4, leukotriene B4; M, male; PEF, peak expiratory flow; ppb, parts per billion; R5Hz, R10Hz, R20Hz, respiratory resistance at 5, 10 and 20 Hz; RV, residual volume; TLC, total lung capacity; TNF- α , tumour necrosis factor-alpha; VA, alveolar ventilation; Z5Hz, respiratory impedance at 5 Hz.

increase after treatment with ICS.36 EBC pH of asymptomatic smokers with more than 10 pack/years was found to be significantly reduced and pH reduction correlated with smoking history. 4,36 Smoking a single cigarette after overnight abstinence increased EBC pH in healthy smokers,³⁷ while the opposite applied for asthmatic smokers in another study.9 However, the aforementioned studies evaluated conventional cigarette not e-cigarette. The changes of EBC pH, in our study, could be partially explained by the changes of the concentrations of some inflammatory mediators with strongly basal isoelectric point in the EBC of the two groups before and after e-cigarette, possibly due to different e-cigarette components. More specifically, LTB4 increased markedly after e-cigarette in asthmatic patients compared to controls and IL-4 increased in asthmatic patients and decreased in controls and the

difference between the two groups was significant. Previous studies have demonstrated that substances with strongly basal isoelectric point in EBC may affect its pH. 25

Studies have identified several inflammatory mediators such as nitric oxide, IL-4, IL-5, IL-13 and various eicosanoids (leukotrienes, prostaglandins and thromboxanes), which play a role in airway inflammation. 9,38 The concentrations of some inflammatory mediators were found to vary in EBC of patients with asthma especially in case of aggravation of airway inflammation. 10,39 IL-4, IL-5, IL-6, IL-8, IL-10, IL-17, ISO8 and TNF- α were found to be increased in EBC of stable asthmatic patients. 36 ICS may affect EBC biomarkers in these patients by decreasing ISO8 and IL-4. 35 In our study, EBC inflammatory biomarkers were higher in controls at baseline as both groups had a significant

history of tobacco exposure; however, in the asthmatic patients, the expression of these indicators was suppressed by ICS.

IL-1 β and TNF- α are pro-inflammatory cytokines which amplify and orchestrate the inflammatory response in asthma and determine its severity. IL-10 is a cytokine derived from Th2 cells while ISO8 is a biomarker of oxidative stress. In our study, IL-10, TNF-α and ISO8 were significantly increased in asthmatic patients after e-cigarette, whereas no significant differences existed in the controls. IL-1ß and IL-4 increased in asthmatic patients, compared to baseline values, but not significantly, whereas they were reduced in controls. However, the changes in concentrations before and after e-cigarette between the two groups differed significantly. To our knowledge, this is the first study examining the acute effects of e-cigarette in EBC of healthy and asthmatic smokers. In previous studies assessing the effect of tobacco cigarette or waterpipe smoke on EBC biomarkers, a reduction of IL-4, IL-5, IL-10, IL-17 and INF- γ , and an increase of ISO8 and TNF- α were found. ^{7,9,34,36} In addition, in a recent study, an increase in IL-1β and IL-6 was found on mice exposed to tobacco-flavoured e-cigarette as in accordance with our study, as far as IL-1\beta.40

The main limitation of our study was that we assessed the pulmonary function and FeNO and EBC only once after 15 and 30 min, respectively. It would be interesting to assess the acute effects of e-cigarette for a longer duration. Another limitation was that our participants were not exposed to a sham-vaping procedure or different types of liquids with and without nicotine. We used only a specific brand of e-cigarette and evaluated patients with asthma treated with low doses of ICS + LABA. However, the effects of e-cigarette had not been studied previously in patients treated with ICS. It is well established that ICS control but not eliminate airway inflammation and the majority of asthmatic patients receive ICS treatment. Therefore, the group of asthmatic patients in our study reflects better real-life conditions. The asthmatic patients recruited belonged to Global Initiative for Asthma (GINA) 'step-3' group and used only one specific brand of e-cigarette, in order to achieve the best possible homogeneity. We used only patients with stable asthma, well controlled with low doses of ICS + LABA to avoid outsized deviations in which patients with poorly controlled asthma or without ICS treatment may have been susceptible at, something that could be a potentially confounding factor on our results.

In conclusion, the use of an e-cigarette for 5 min in asthmatic smokers treated with low doses of ICS + LABA altered acutely both pulmonary function and airway inflammation compared to a sample of matched healthy smokers. This study adds to the very limited published information concerning the short-term impact of e-cigarette on lung function and particularly on airway inflammation evaluated by EBC. As e-cigarette is becoming more popular, there is an urgent need for more future studies in larger populations of smokers both with and without pulmonary disease as asthma and for more prolonged or chronic use of e-cigarette, aiming to better understand the pathophysiological mechanisms and effects of e-cigarette on lung function and airway inflammation.

Data availability statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgements: The authors thank the Hellenic Society of Respiratory and Occupational Chest Diseases, which supported this work with a scholarship award to S.-C.K. at the second Panhellenic Congress of Thorax Disorders and Diseases of the Environment 2016.

Author contributions: Conceptualization: S-C.K., A.P., D.S., P.K., K.P., I.G., T.K., P.A., D.P. Data curation: S.-C.K., A.P., K.D., K.P., F.E., A.M., K.P.-F., I.G., T.K., P.A., D.P. Formal analysis: S.-C.K., A.P., K.D., I.G., T.K., D.P. Funding acquisition: S.-C.K., A.P. Investigation: S.-C.K., A.P., K.D., D.S., P.K., K.P., F.E., A.M., K.P.-F., I.G., T.K., P.A., D.P. Methodology: S.-C.K., A.P., K.D., D.S., P.K., K.P., F.E., A.M., K.P.-F., I.G., T.K., P.A., D.P. Project administration: S.-C.K., A.P., D.S., P.K., K.P., A.M., K.P.-F., I.G., T.K., P.A., D.P. Resources: S.-C.K., A.P., K.D., K.P., A.M., I.G., T.K., P.A., D.P. Software: S.-C.K., A.P., K.P., F.E., A.M., I.G., T.K., P.A., D.P. Supervision: S.-C.K., A.P., D.S., P.K., K.P., F.E., K.P.-F., I.G., T.K., P.A., D.P. Validation: S.-C.K., A.P., D.S., F.E., K.P.-F., I.G., T.K., D.P. Visualization: S.-C.K., A.P., K.P.-F., I.G., T.K., D.P. Writing-original draft: S.-C.K., A.P., K.D., D.S., P.K., K.P., F.E., A.M., K.P.-F., I.G., T.K., P.A., D.P. Writing-review & editing: S.-C.K., A.P., K.D., D.S., P.K., K.P., F.E., A.M., K.P.-F., I.G., T.K., P.A., D.P.

Abbreviations: DL_{CO}, diffusion lung capacity for carbon monoxide; e-cigarette, electronic cigarette; EBC, exhaled breath condensate; ERV, expiratory reserve volume; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; GINA, Global Initiative for Asthma; ICS, inhaled corticosteroid; Ig, immunoglobulin; IL, interleukin; IOS, impulse oscillometry system; ISO8, 8-isoprostane; K_{CO} , DL_{CO}/VA; LABA, long-acting β2-agonist; LTB4, leukotriene B4; PEF, peak expiratory flow; PFT, pulmonary function test; ppb, parts per billion; R5Hz, R10Hz and R20Hz, respiratory resistance at 5, 10 and 20 Hz, respectively; RV, residual volume; Th2, Thelper-type-2; TLC, total lung capacity; TNF-α, tumour necrosis factor-alpha; VA, alveolar ventilation; Z5Hz, respiratory impedance at 5 Hz.

REFERENCES

- 1 Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2016. [Accessed 22 Dec 2016.] Available from URL: www.ginasthma.org
- 2 Polosa R, Thomson NC. Smoking and asthma: dangerous liaisons. Eur. Respir. J. 2013; 41: 716–26.
- 3 Aanerud M, Carsin AE, Sunyer J, Dratva J, Gislason T, Jarvis D, deMarco R, Raherison C, Wjst M, Dharmage SC *et al.* Interaction between asthma and smoking increases the risk of adult airway obstruction. *Eur. Respir. J.* 2015; **45**: 635–43.
- 4 Koczulla AR, Noeske S, Herr C, Jörres RA, Römmelt H, Vogelmeier C, Bals R. Acute and chronic effects of smoking on inflammation markers in exhaled breath condensate in current smokers. Respiration 2010; 79: 61–7.
- 5 Carpagnano GE, Kharitonov SA, Foschino-Barbaro MP, Resta O, Gramiccioni E, Barnes PJ. Increased inflammatory markers in the exhaled breath condensate of cigarette smokers. *Eur. Respir. J.* 2003; 21: 589–93.
- 6 Mazur W, Stark H, Sovijärvi A, Myllärniemi M, Kinnula VL. Comparison of 8-isoprostane and interleukin-8 in induced sputum and exhaled breath condensate from asymptomatic and symptomatic smokers. *Respiration* 2009; 78: 209–16.

- 7 Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA, Barnes PJ. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am. J. Respir. Crit. Care Med. 2000; 162: 1175-7.
- 8 Prieto L, Palop J, Llusar R, Herrera S, Perez-Frances C, Lanuza A, Aguilar D. Effects of cigarette smoke on methacholine- and AMP-induced air trapping in asthmatics. *J. Asthma* 2015; **52**: 26–33.
- 9 Papaioannou AI, Koutsokera A, Tanou K, Kiropoulos TS, Tsilioni I, Oikonomidi S, Liadaki K, Pournaras S, Gourgoulianis KI, Kostikas K. The acute effect of smoking in healthy and asthmatic smokers. Eur. I. Clin. Invest. 2010; 40: 103–9.
- 10 Boulet LP, Lemière C, Archambault F, Carrier G, Descary MC, Deschesnes F. Smoking and asthma: clinical and radiologic features, lung function, and airway inflammation. *Chest* 2006; 129: 661-8.
- 11 St-Laurent J, Bergeron C, Pagé N, Couture C, Laviolette M, Boulet LP. Influence of smoking on airway inflammation and remodelling in asthma. *Clin. Exp. Allergy* 2008; **38**: 1582–9.
- 12 Flouris AD, Chorti MS, Poulianiti KP, Jamurtas AZ, Kostikas K, Tzatzarakis MN, Wallace Hayes A, Tsatsakis AM, Koutedakis Y. Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function. *Inhal. Toxicol.* 2013; 25: 91-101.
- 13 Vardavas CI, Anagnostopoulos N, Kougias M, Evangelopoulou V, Connolly GN, Behrakis PK. Short-term pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide. *Chest* 2012; **141**: 1400–6.
- 14 Staudt MR, Salit J, Kaner RJ, Hollmann C, Crystal RG. Altered lung biology of healthy never smokers following acute inhalation of Ecigarettes. Respir. Res. 2018; 19: 78.
- 15 Reinikovaite V, Rodriguez IE, Karoor V, Rau A, Trinh BB, Deleyiannis FW, Taraseviciene-Stewart L. The effects of electronic cigarette vapour on the lung: direct comparison to tobacco smoke. *Eur. Respir. J.* 2018; **51**: pii: 1701661.
- 16 Lappas AS, Tzortzi AS, Konstantinidi EM, Teloniatis SI, Tzavara CK, Gennimata SA, Koulouris NG, Behrakis PK. Shortterm respiratory effects of e-cigarettes in healthy individuals and smokers with asthma. *Respirology* 2018; 23: 291–7.
- 17 Palamidas A, Tsikrika S, Katsaounou PA, Vakali S, Gennimata SA, Kaltsakas G, Gratziou C, Koulouris N. Acute effects of short-term use of e-cigarettes on airways physiology and respiratory symptoms in smokers with and without airway obstructive diseases and in healthy non-smokers. *Tob. Prev. Cessat.* 2017; 3: 1–8.
- 18 Boulay MÈ, Henry C, Bossé Y, Boulet LP, Morissette MC. Acute effects of nicotine-free and flavour-free electronic cigarette use on lung functions in healthy and asthmatic individuals. *Respir. Res.* 2017: 18: 33.
- 19 CDC/National Center for Health Statistics. Adult tobacco use information. 2017. [Accessed 29 Aug 2019.] Available from URL: https://www.cdc.gov/nchs/nhis/tobacco/tobacco_glossary.htm
- 20 Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, Olin AC, Plummer AL, Taylor DR; American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care. Med. 2011; 184: 602-15.
- 21 Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P et al.; ATS/ERS Task Force. Standardisation of spirometry. Eur. Respir. J. 2005; 26: 319–38.
- 22 Oostveen E, MacLeod D, Lorino H, Farré R, Hantos Z, Desager K, Marchal F; ERS Task Force on Respiratory Impedance Measurements. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. *Eur. Respir. J.* 2003; 22: 1026-41.
- 23 Bickel S, Popler J, Lesnick B, Eid N. Impulse oscillometry: interpretation and practical applications. *Chest* 2014; **146**: 841-7.

- 24 American Thoracic Society; European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 2005: 171: 912-30.
- 25 Horváth I, Hunt J, Barnes PJ, Alving K, Antczak A, Baraldi E, Becher G, van Beurden WJ, Corradi M, Dekhuijzen R et al.; ATS/ERS Task Force on Exhaled Breath Condensate. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Respir. J. 2005; 26: 523–48.
- 26 Antal-Szalmás P, Nagy B Jr, Debreceni IB, Kappelmayer J. Measurement of soluble biomarkers by flow cytometry. *EJIFCC* 2013; 23: 135-42.
- 27 Kougias M, Vardavas CI, Anagnostopoulos N, Matsunaga Y, Tzwrtzi A, Lymberi M, Connolly GN, Behrakis PK. The acute effect of cigarette smoking on the respiratory function and FENO production among young smokers. *Exp. Lung Res.* 2013; 39: 359–64.
- 28 Marini S, Buonanno G, Stabile L, Ficco G. Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide. *Toxicol. Appl. Pharmacol.* 2014; 278: 9–15.
- 29 Vardavas CI, Anagnostopoulos N, Kougias M, Evangelopoulou V, Connolly GN, Behrakis PK. Acute pulmonary effects of sidestream secondhand smoke at simulated car concentrations. *Xenobiotica* 2013; 43: 509–13.
- 30 Lappas AS, Konstantinidi EM, Tzortzi AS, Tzavara CK, Behrakis PK. Immediate effects of cigar smoking on respiratory mechanics and exhaled biomarkers; differences between young smokers with mild asthma and otherwise healthy young smokers. *Tob. Induc. Dis.* 2016; **14**: 29.
- 31 Antoniewicz L, Bosson JA, Kuhl J, Abdel-Halim SM, Kiessling A, Mobarrez F, Lundbäck M. Electronic cigarettes increase endothelial progenitor cells in the blood of healthy volunteers. *Atheroscle-rosis* 2016; 255: 179–85.
- 32 Balint B, Donnelly LE, Hanazawa T, Kharitonov SA, Barnes PJ. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. *Thorax* 2001; **56**: 456–61.
- 33 D'Ruiz CD, Graff DW, Robinson E. Reductions in biomarkers of exposure, impacts on smoking urge and assessment of product use and tolerability in adult smokers following partial or complete substitution of cigarettes with electronic cigarettes. *BMC Public Health* 2016: 16: 543.
- 34 Bentur L, Hellou E, Goldbart A, Pillar G, Monovich E, Salameh M, Scherb I, Bentur Y. Laboratory and clinical acute effects of active and passive indoor group water-pipe (narghile) smoking. *Chest* 2014; **145**: 803–9.
- 35 Kharitonov SA, Barnes PJ. Effects of corticosteroids on noninvasive biomarkers of inflammation in asthma and chronic obstructive pulmonary disease. *Proc. Am. Thorac. Soc.* 2004; **1**: 191–9.
- 36 Konstantinidi EM, Lappas AS, Tzortzi AS, Behrakis PK. Exhaled breathe condensate: technical and diagnostic aspects. *ScientificWorldJournal* 2015; **2015**: 1–25.
- 37 Calušić AL, Varnai VM, Macan J. Acute effects of smoking and food consumption on breathe condensate pH in healthy adults. Exp. Lung Res. 2011; 37: 92-100.
- 38 Lu Y, Cai S, Nie J, Li Y, Shi G, Hao J, Fu W, Tan H, Chen S, Li B *et al.* The natural compound nujiangexanthone A suppresses mast cell activation and allergic asthma. *Biochem. Pharmacol.* 2016; **100**: 61–72.
- 39 Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. *Allergy* 2016; **71**: 741–57.
- 40 Glynos C, Bibli SI, Katsaounou P, Pavlidou A, Magkou C, Karavana V, Topouzis S, Kalomenidis I, Zakynthinos S, Papapetropoulos A. Comparison of the effects of e-cigarette vapor with cigarette smoke on lung function and inflammation in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2018; 315: L662-72.